NanoSpeed ${ }^{\text {TM }} 1 \times 1$ Series Fiber Optical On-Off Switch (SMF, PMF, High Power)

(Protected by U.S. patent 7,403,677B1 and pending patents)

Features

- Solid-State
- High speed
- Ultra-high reliability
- Low insertion loss
- Compact

Applications

- Optical blocking
- Configurable operation
- Instrumentation

Product Description

The NanoSpeed ${ }^{\text {TM }} 1 \times 1$ series fiber optic on-off switches are fast shutter device featuring very low loss, fast response, and high optical power handling. This is achieved using patented non-mechanical configurations with solid-state all-crystal designs, which eliminates the need for mechanical movement and organic materials. The NS fiberoptic switch is designed to meet the most demanding switching requirements of ultra-high reliability, fast response time, and continuous switching operation. The switch is bidirectional.

Agiltron's PCB driver listed in the web is recommended to operate this device, featuring high efficiency and low cost with 12 V DC power and TTL control signal.

Performance Specifications

NanoSpeed Series 1x 1 Switch		Min	Typical	Max	Unit
Central wavelength ${ }^{[1]}$		780		2050	nm
$\begin{aligned} & \text { Insertion } \\ & \text { Loss }{ }^{[2]} \end{aligned}$	1700~2050		1.0	1.5	dB
	1260~1650nm		0.6	1.0	
	960~1100nm		0.8	1.3	
	780~960nm (Normal power switch only)		1.0	1.5	
On-Off Ratio		20	25	35	dB
PDL (SMF Switch only)			0.15	0.3	dB
PMD (SMF Switch only)			0.1	0.3	ps
ER (PMF Switch only)		18	25		dB
IL Temperature Dependency			0.25	0.5	dB
Return Loss		45	50	60	dB
Response Time (Rise, Fall)				300	ns
Fiber Type		SMF-28, Panda PM, or equivalent			
Repeat Rate	5 kHz driver	DC	5		kHz
	100kHz driver	DC	100		
	500 kHz driver	DC	500		
Optic power Handling ${ }^{[3]}$	Normal power switches		300		mW
	High power switches			5	W
Operating Temperature		-5		70	${ }^{\circ} \mathrm{C}$
Storage Temperature		-40		85	${ }^{\circ} \mathrm{C}$

[1] Operation bandwidth is $+/-25 \mathrm{~nm}$ approximately at 1550 nm .
[2] Measured without connectors. For other wavelengths, please contact us.
[3] Defined at $1310 \mathrm{~nm} / 1550 \mathrm{~nm}$. For the shorter wavelength, the handling power may be reduced, please contact us for more information.

NanoSpeed ${ }^{\text {TM }}$ 1x1 Series Fiber

Optical On-Off Switch (SMF, PMF, High
Power)

Mechanical Dimensions (mm)

Low Power Switches

Input (White)

High Power Switches ${ }^{[1]}$
[1] For 2000 nm wavelength, the box size is $60 \times 14 \times 7 \mathrm{~mm}$.

NanoSpeed ${ }^{\text {TM }} 1 \times 1$ Series Fiber

Optical On-Off Switch (SMF, PMF, High Power)

Typical Speed and Repetition Measurement

Typical Bandwidth Measurement

NanoSpeed ${ }^{\text {TM }} 1 \times 1$ Series Fiber
 Optical On-Off Switch (SMF, PMF, High
 Power)

Ordering Information

$\square \square \square .$	11	\square		\square	\square	\square	\square
	Type	Wavelength ${ }^{[1]}$	Configuration	Fiber Type		Fiber Length	Connector ${ }^{[2]}$
NSSW = Normal power switch NHSW = High power switch	1 $\times 1=11$	$\begin{aligned} & 1060 \mathrm{~nm}=1 \\ & \text { L Band=2 } \\ & 1310 \mathrm{~nm}=3 \\ & 1410 \mathrm{~nm}=4 \\ & 1550 \mathrm{~nm}=5 \\ & 780 \mathrm{~nm}=7 \\ & 850 \mathrm{~nm}=8 \\ & 980 \mathrm{~nm}=9 \\ & 2000 \mathrm{~nm}=6 \\ & \text { Special }=0 \end{aligned}$	Normally on \& single stage $=11$ Normally off \& single stage package= 21	SMF-28=1 HI1060=2 HI780=3 PM 1550/400=4 PM 1550/250=5 PM1950=6 PM980=9 PM850=8 Special=0	Bare fiber=1 900um loose tube=3 Special=0	$0.25 \mathrm{~m}=1$ $0.5 \mathrm{~m}=2$ $1.0 \mathrm{~m}=3$ Special=0	None=1 FC/PC=2 $\mathrm{FC} / \mathrm{APC}=3$ SC/PC=4 SC/APC=5 ST/PC=6 LC/PC=7 Duplex LC=8 LC/APC=9 Special=0

[1]. High power switch isn't available for the wavelength shorter than 960 nm
[2]. There isn't any connector in the high power switches normally. Please contact us for high power connectors.

